Nontrivial solutions for nonlinear discrete boundary value problems of the fourth order
نویسندگان
چکیده
We study the existence of multiple nontrivial solutions for nonlinear fourth order discrete boundary value problems. first establish criteria at least two problems and obtain conditions to guarantee that are sign-changing. Under some appropriate assumptions, we further prove have three solutions, which positive, negative, sign-changing, respectively. include examples illustrate applicability our results. Our theorems proved by employing variational approaches, combined with classic mountain pass lemma a result from theory invariant sets descending flow.
منابع مشابه
NON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملNontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation
The nonlinear three-point boundary value problem { −u′′(t) = f(t, u(t)), t ∈ I, βu(0)− γu′(0) = 0, u(1) = αu(η), is discussed under some conditions concerning the first eigenvalue corresponding to a special linear operator, where I = [0, 1], η ∈ (0, 1), α, β, γ ∈ [0,∞) with β + γ 6= 0, f : [0, 1] × (−∞,+∞) → (−∞,+∞) is sign–changing continuous function and may be unbounded from below. By applyi...
متن کاملExistence of nontrivial solutions for a nonlinear fourth-order boundary value problem via iterative method
In this article, we study a nonlinear fourth-order differential equation two-point boundary value problem. We use monotone iterative technique and lower and upper solutions of completely continuous operators to get the existence of nontrivial solutions for the problem. The results can guarantee the existence of nontrivial sign-changing solutions and positive solutions, and we can construct two ...
متن کاملNontrivial Solutions for Singular Nonlinear Three-Point Boundary Value Problems
The singular nonlinear three-point boundary value problems { −(Lu)(t) = h(t)f (u(t)), 0 < t < 1, βu(0)− γ u′(0) = 0, u(1) = αu(η) are discussed under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, where (Lu)(t) = (p(t)u′(t))′+q(t)u(t), 0 < η < 1, h(t) is allowed to be singular at both t = 0 and t = 1, and f need not be nonnegative. The associated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2021
ISSN: ['0035-7596', '1945-3795']
DOI: https://doi.org/10.1216/rmj.2021.51.2115